Considerations on Dimensions

Zygmunt Morawski

ABSTRACT: The existence of the n -dimensional and 2^{n} dimensional spaces has been discussed. One has called the particular attention to the $D=6$ spaces. One has touched the meaning of the mixing the loops. In the end the existence of the totally complex coordinates has been proved.

There are the space-times: $\mathrm{D}=6$ (compactification $\mathrm{D}=10$ equal 4 dimensions), the space-time $\mathrm{D}=11$ (compactification $\mathrm{D}=11$ equal 4 dimensions), $\mathrm{D}=8$ (compactification $\mathrm{D}=11$ equal 3 dimensions or enlargement $\mathrm{D}=4$) [1].
Every small natural number is a dimension of certain space-time.
There are massless particles in the supermembrane. In the $D=11$ supermembrane the are massless states containing graviton [2].
There are 16 -dimensional $S O(9)$ spinors - eight two-component spinors. The Clifford algebra can be represented on $128_{\mathrm{B}}+128_{\mathrm{F}}$ dimensional spinor of $\mathrm{SO}(16)$ [2], so there are 2^{6} dimensions.
In $\mathrm{D}=10$ space-time the heterotic string is dual to the heterotic five-brane.
In $D=6$ it would be dual to another heterotic string. So the $D=6$ space-time exists too [3].
The $\mathrm{D}=6$ space-time is treated by authors as an unimportant result (the compactification of $\mathrm{D}=10$ space-time), but I am the opinion that there can be a further enlargement of the $\mathrm{D}=5$ Kaluza-Klein space with the next dimension permitting to enlarge this conception with the next interactions.
The process of the string-five-brane duality mixes up the string loops with the five-brane loops [3].
It suggests that the loops are fundamental objects and they are mixed in the process of duality [3].
$\mathrm{D}=4$ heterotic string theory $(0,1,2,3)$ is the four-dimensional space-time,
$z=x_{2}+i x_{3}=r^{i \theta}(4,5,6,7,8,9)$ are the compactificated directions [4].

It confirms that one should take the superposition of the real and purely complex space-time coordinate, so as one should take under considerations all solutions of the equation:

$$
m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

similarly as Dirac didn't reject the negative root from "Pythagorean theorem".

References:
[1] M. J. Duff, R. Minasian, E. Witten, Nuclear Physics B 465 (1996), p. 413-438
[2] I. Bars, Ch. N. Pope, E. Sezgin, Physics Letters B, vol. 198 no 4; 3. December 1987
[3] M. J. Duff, J. X. Lu, Nuclear Physics B 357 (1991), 534-564
[4] M. J. Duff, S. Feraro, Ramzi R. Khuri, J. Rahmfeld, Physics Letters B 356 (1995) 479-496, 24. August 1995

